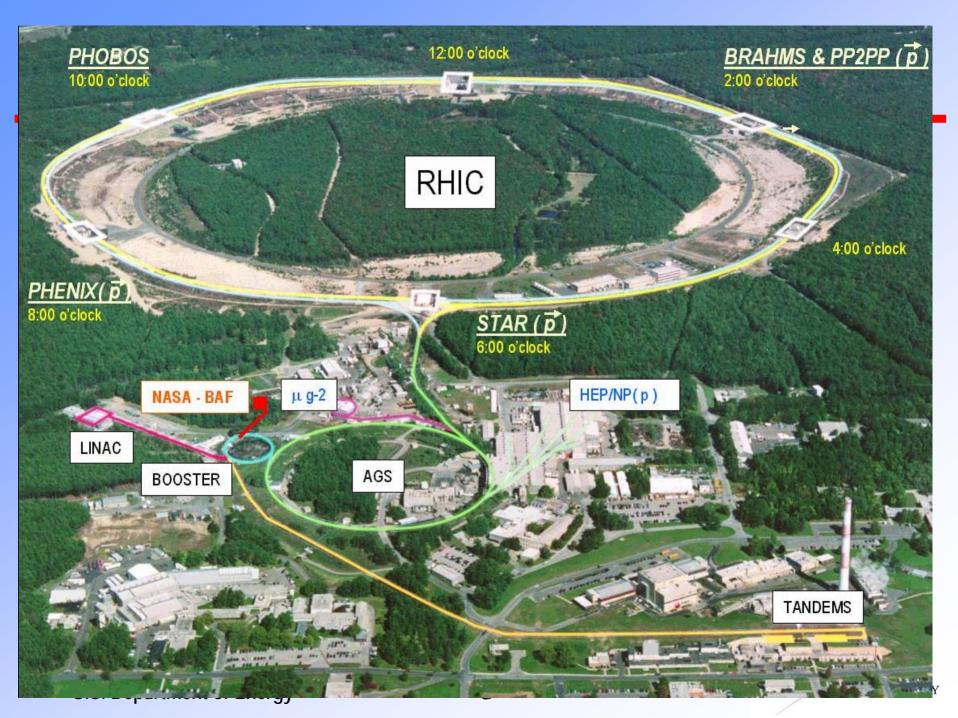
BNL 200 MeV Linac Availability and Reliability

D. Raparia, V.LoDestro and B. Briscoe


July 11, 2006 RHIC Retreat 2006

OUTLINE

- Introduction
- Linac Beam Requirements
- 2006 downtime data and analysis
- Future Improvements
- Conclusion

LINAC Beam Parameters

- Final Energy
- Peak Current
- Trans. Emittance(n,rms)
- Energy Spread
- Energy Jitter
- Chopping

200 MeV

 $30-40 \text{ mA/} \sim .5 \text{ mA polarized}$

2 pi mm mrad

± 0.1 MeV (0.1 %, 95%)

 $\pm 0.1 \, \text{MeV}$

Slow + fast

Linac Requirements

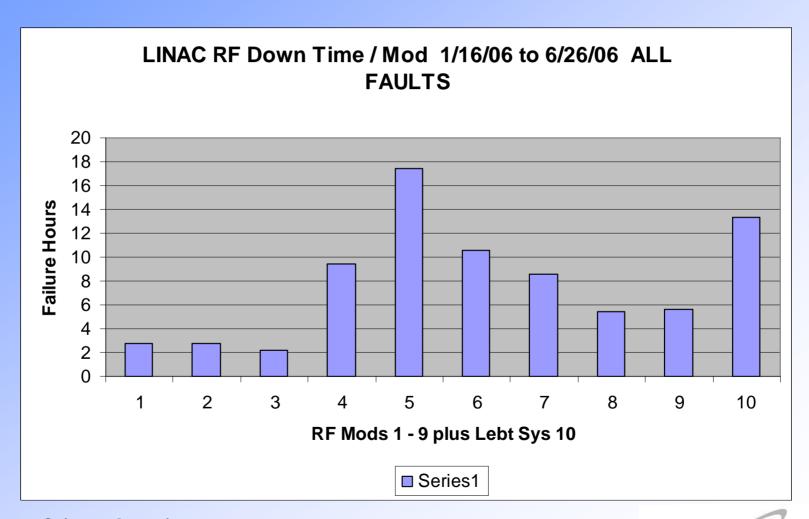
RHIC/Booster

To booster one pulse every super cycle (Pulse width 226 μ s) To HEBT one pulse every super cycle (Pulse width 302 μ s) Super Cycle 3.800244 s peak current ~ 200 μ A

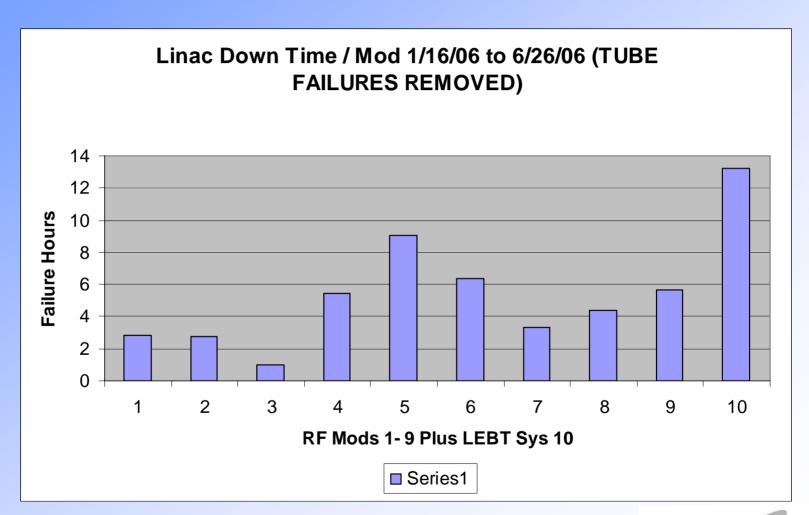
BLIP

6.67 Hz pulse width ~ 400 µs Beam current ~ 38 mA

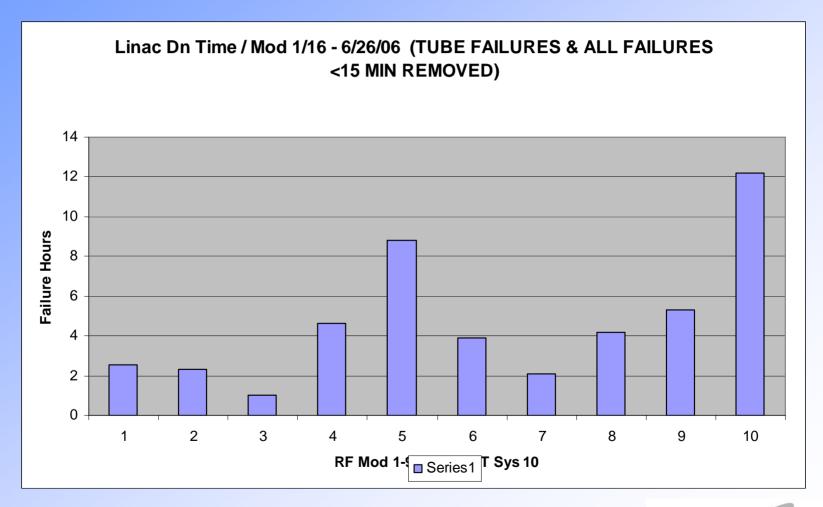
Other NSRL, REF



2006 down time and analysis


Our average availability	/

2006 availability	95%
-------------------------------------	-----

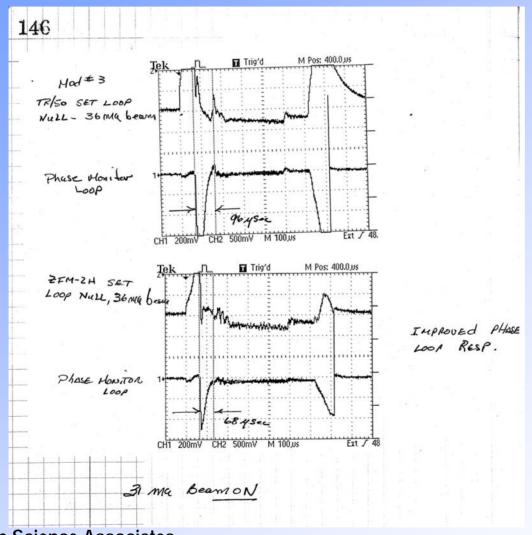

LINAC RF down time

LINAC down time (tube failure removed)

LINAC down time (tube failure and <15 min interruption removed

Other equipment failure

- Modulator SCR Controller Bucket, 2 failures, new low level power supplies have been ordered for replacement, as well as high power version of an internal line driver which has a high failure rate.
- RF Cabinet Blower motors and mountings, 2 failures, new shock mounts have been ordered for all motor mountings.
- 4CW and 7651 anode PS output resistors, 2 failures; an internal small cooling fan will be added to the PS chassis. Prototypes have been completed.
- Modulator Telemeter Chassis, 2 Failures, a new design is in process replacing the old bi-polar transistors with a new higher voltage FET. We hope to have it ready for next year's run.


OPPIS

- Continually improving reliability (learning curve)
 - -This is longest physics run for OPPIS
 - -ECR maintenance 1 week->2-3 week
 - -Solid state laser
 - Spare parts (new solid state extractor modulator)
- Longest (6.5 Hrs) down time due to water cooling system failure on the Extractor deck of the sodium cell
 - -modified to exclude water in vacuum system

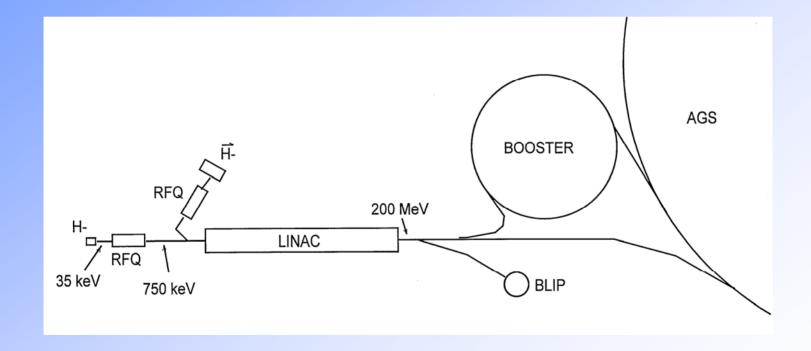
Linac availability improvements

- Big improvement due to PLC in rf system
 - -Automated reset
 - -Still 4 modulator and 8 drivers remaining
- Solid State mixture improved transient time reduce beam loss
- Temperature on the carbon block in blip line reduce by 20%

Improved transient time

BLIP

- Temperature monitoring system on the carbon blocks at end of the blip line
 - -Result in better tune reducing beam loss in the blip line


Future plan

- Complete modification in linac RF control PLC
 4 modulators
 8 Driver
- PLC control for H- source/LEBT
- Change buncher rf system to solid sate

Conclusions

- Continuously improving reliability of linac
- Linac severs many customers
- Biggest demand on the system from BLIP
- Beam study time must help to improve linac performance

Linac Layout

Linac History

- Construction started -April, 1967
- First Beam November, 1970
- Total Facility Cost 22.5 M\$

Year	Rep-Rate	Beam Width C	Current	Avg. Cu	rrent			Hz
	μs	n	nA	μĂ		1970	10	
200		100	200		1972	10	1	00
	55	44		1973-75	10		100	
	60	60	19	76-				Switch to 5
Hz Ope	eration		1	979	5			220
	50-70	55-77	19	982				Switch to H-
acceler	ration		19	984	5			200
	25	25	1	984				Add Polarized
H- Ope	eration		19	986	5			470
	25-30	59-71	1	989				Switch To
RFW P	re-Injector		19	990	5			500
	25	63	19	996	7.5	330(500)	
	38	95(155)	200	00		· ·	,	Add OPPIS
for pola	arized Proton	, ,						

Linac

- Basically the same as FNAL's, built in 1970
- Performance transmission, emittance, beam loss, radiation levels/activation
 - Stable from year-to-year with respect to operating values
 - No careful delta-t, etc. could be better
 - Probably misalignments
- Vacuum for linac Ion pumps/cryos

Linac Current & Emittance

Location	Simulation	Measurement
	Peak Current (mA)	
L3	62.9	62.9
L4	62.2	57.8
L5	54.6	53.2
T1	37.1	37.7
Т9	36.4	35.9
	Emittance (rms,nor) pi mm mr	
RFQ	0.375	
Buncher	0.473	0.57
200 MeV	1.85	1.92
H SEM	+-0.29 MeV	+-8e-4 (del p/P)
p okkraherosatien de AGS ociates	+-0.5 MeV	+- 1.4e-3 (del p/PPBROOKHA

U.S. Department of Energy

20

NATIONAL LABORAT

BNL Linac

- 200 MeV
- 9 Accelerating Cavities
- 475 Meter Long
- 286 Cells (295 Quads)6 -84 cm/cell1.3 -40 cm/gap
- Average Field 2.5 MV/m , 5-10 MV/m in gaps
 Tank1 56 cells, 10 MeV, 180 keV/gap
 Tank9 19 cells, 20 MeV, 1MeV/gap

Linac Parameters

TABLE II.1,h.1 Summary drift tube table

200 MEV linac final drift tube table

 $\phi_s = -32^\circ$

Proton energy (MEV) Proton velocity, B

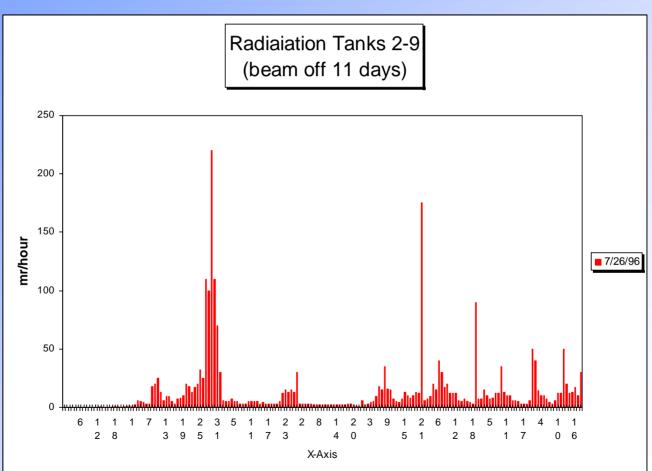
Energy gain (MEV) Cavity length (m) Cavity diameter (cm) Drift tube diameter (cm) Bore hole diameter (cm) D.T. corner radius (cm) Bore hole corner radius (cm) Cell length (cm) Gap length (cm) g/L Axial transit time factor Shunt impedance (MΩ/m) Drift space following cavity (m) Accumulated length (m) Number of unit cells Number of full drift tubes Average axial field. EO (MV/m) Average gap field Eg (MV/m) Peak surface field E max (MV/m) Cavity excitation power (MW) Total power/cavity for 100 mA (MW) Total power/cavity for 200 mA (MW) Factor x, (Stem losses, etc.)

			C	Cavity numbers					Total
	2	In Out	4 In Out	5 In Out	6 In Out	7 In Out	In Out	In Out	Total/ Final
1000	In Out	54 66.	18 92.	55 116.	54 138. 457 0.	98 160 491 0.	53 181. 520 0	01 200.30 545 0.566	200,30 0.5665
9.67 7.44 94 18 2.0 2.5° 0.5 6.04 21.8 1.3 6.7 0.21 0.31 0.64 0.81 27.0 47.97 0.22 7.66 56 55 1.60-2.31 7.62 7.45 8.9 10.2 0.51 1.48 2.45 1.30	27,12 19,02 90 16 3.0 4.0 1.0 22.2 40.8 4.4 12.7 0.20 0.31 0.86 0.81 53.5 44.8 0.6 27,28 60 59 2.0	28.64 16.53 88 16 3.0 4,0 1.0 41.1 53.0 12.2 19.3 0.30 0.36 0.82 0.75 44.56 35 34 2.60 8.7 7.2 13.1 12.9 2.36 5.22 8.08 1.35	26.37 16.68 88 16 3.0 4.0 1.0 53.3 61.5 19.5 25.1 0.37 0.41 0.75 0.69 35.0 28.5 1.0 62.24 29 28 2.60 7.03 6.3 12.9 13.2 2.57, 7.85 1.40	23.99 15.58 84 16 4.0 5.0 1.0 61.8 67.9 22.6 26.9 0.37 0.40 0.73 0.69 29.6 25.0 1.0 78.82 24 23 2.56 6.9 6.4 14.1 2.75 5.15 7.55 1.45	22.44 15.54 84 16 4.0 5.0 1.0 68.2 73.1 27.1 30.8 0.40 0.42 0.68 0.65 24.8 21.7 1.0 95.36 22 21 2.56 6.4 6.1 14.1 14.2 2.91 5.16 7.41 1.50	21.55 15.83 84 16 4.0 5.0 1.0 73.3 77.4 30.9 34.2 0.42 0.44 0.64 0.61 21.5 19.0 10 112.19 21 20 2.56 6.1 5.8 14.2 14.3 5.28 7.43 1.55	20.48 15.88 84 16 4.0 5.0 1.0 77.6 81.1 34.3 37.1 0.44 0.46 0.61 0.58 18.9 16.8 1.0 129.07 20 19 2.56 5.8 5.6 14.3 14.5 3.19 5.24 7.29 1.55	19.29 15.73 84 16 4.0 5.0 1.0 81.3 84 3 37.3 39.7 0.46 0.47 0.58 0.55 16.7 14.9 144.80 19 18 2.56 5.6 5.4 14.5 14.8 3.24 5.17 7.10 1.55	6,57 475,07 286 277 22,06 42,03 62,00

* Bore hole diameter changes in cell #18 (at start of full D.T. #18). .2760 . 1491 . 2740

.3559

13580 .4130

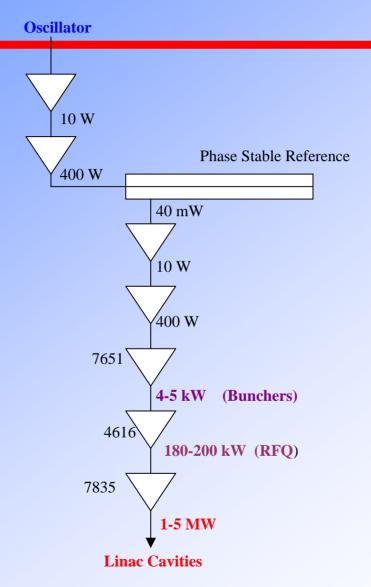

.4150 -4560

.4922 .4580 .5198 14909

.5460 15212 .5662 .5447

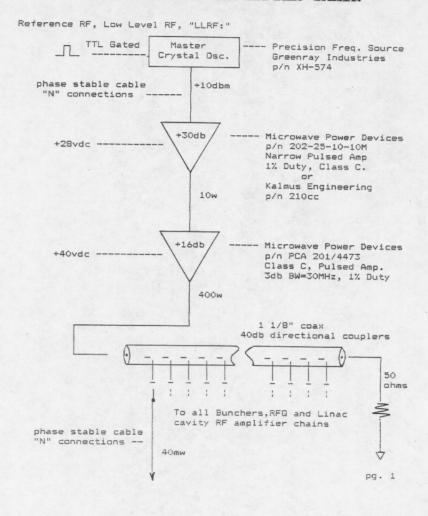
8g= 1/1

Radiation Along Linac

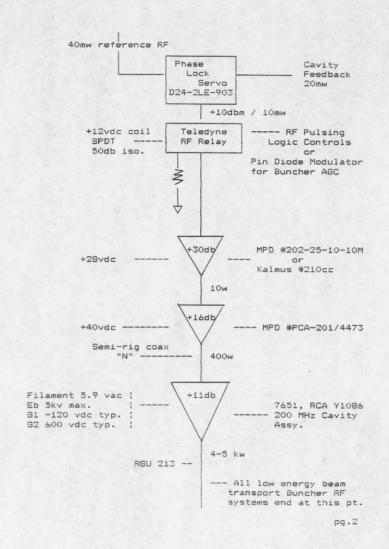


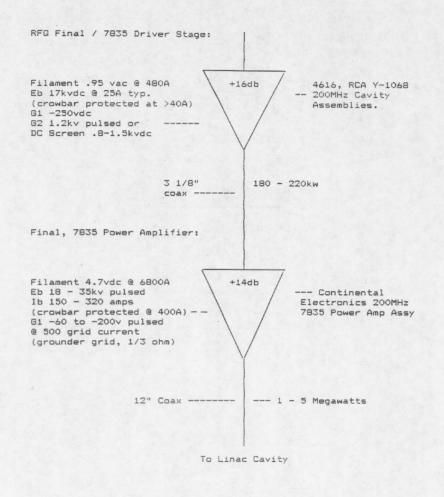
Linac RF System

- Schematic
- Photos
- Comments on new transmission line
- Tube lifetime, costs, etc.12000 hrs, \$20,0003 Tubes /years

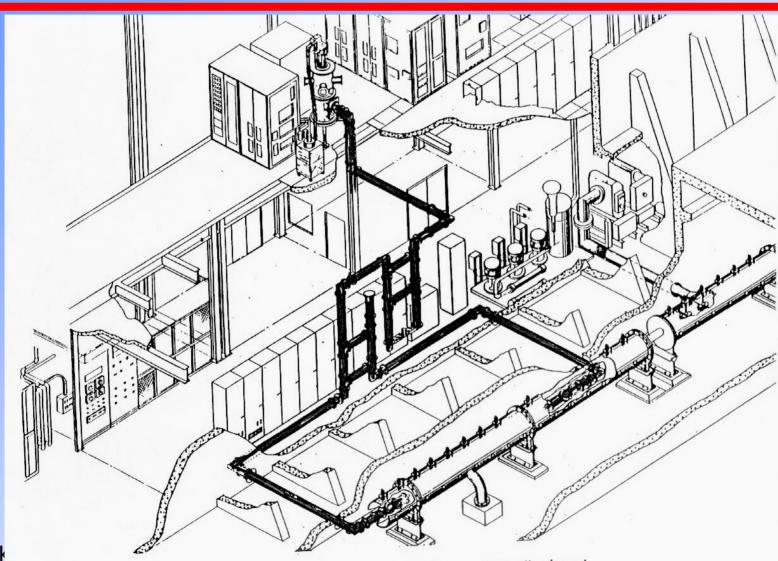

RF Systems

RF Systems (1)

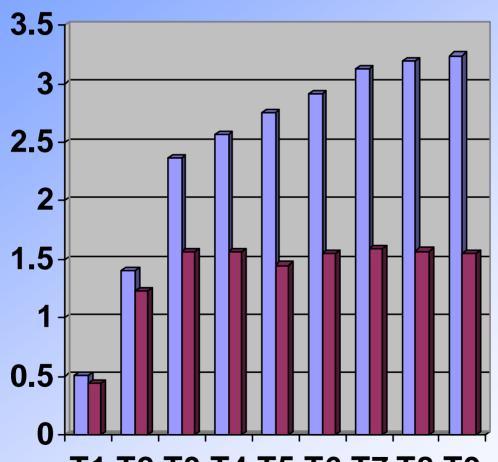

BROOKHAVEN NATIONAL LABORATORY 201.25 MHz RF AMPLIFIER CHAIN



RF Systems (2)


RF Systems (3)

pg. 3

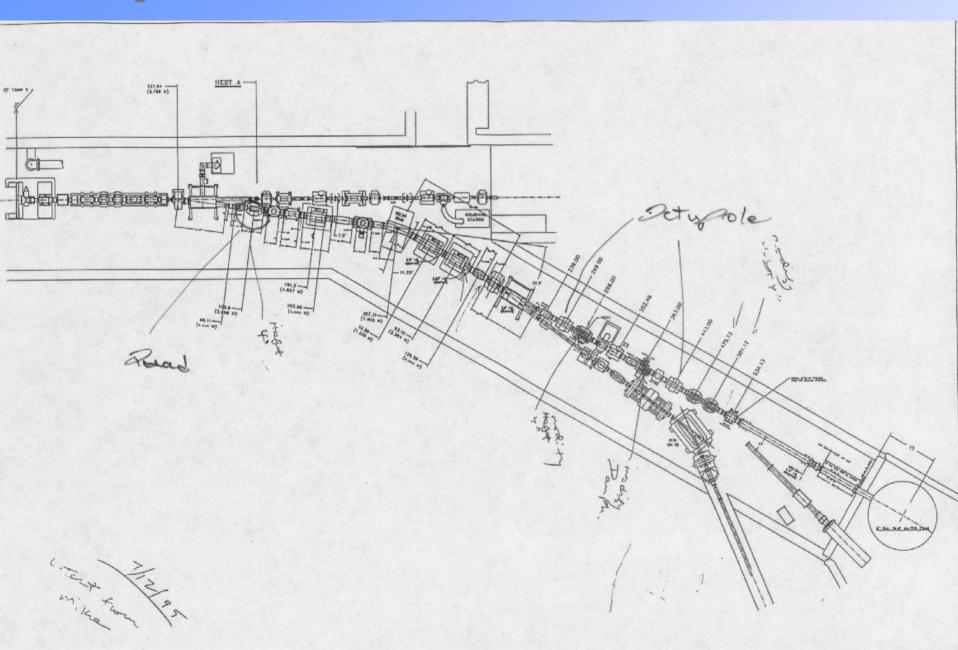

RF Transfer-Line

Brook U.S

FIGURE III.3.b.2 RF transmission-line layout.

Linac Power

- Cavity Power (Mw)
- Beam Power (Mw)

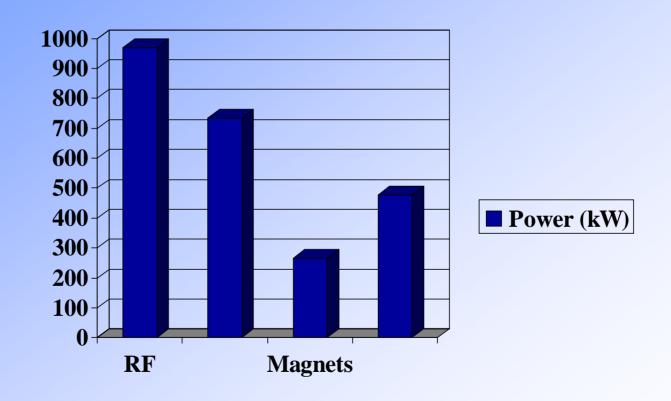

Brookhaven Science Associates T3 T4 T5 T6 T7 T8 T9

U.S. Department of Energy

30

Layout of BLIP Beam Line

Diagnostics in the Linac


- Transformers
 - where located
 - how fast response
- Emittance measurements
- Harps, SEMS
- Fast pickups
 - not used much
- Stripline position monitors

Diagnostics in the Linac

Device	LEBT	MEBT	Tanks	HEBT	LTB	BLIP
Trans.	1	3	9	3	3	3
Pol. Trans.			1		2	
FC	1	1				
Fast FC		1				
Emitance		2				
Sems			8	3	3	1
Harps				1	3	2
o lghawe n Scie J.S. Departme	nce Associate ent of Energy	S	6 33	3		BROOKH

Power to Run Linac -2.5 MW (7.5 Hz ,140 μA)

Linac Power

Vin/Brian/Spinner measurements, 7/15/96, as linac turned off. (note: Vin reported 50 kW type fluctuations in the measurements, as va

	kW	Differential	
Linac full on (7.5 Hz, 140 uA)	2438		
BLIP transport off	2206	232	
RF and quad pulsing off	1943	263	(Quals 6 20
RF HV PS off	1925	18	
LEBT bunchers off	1920	5	
HEBT off	1934	-14	
7835 filaments to 6000 A	1705	229	
4616's off	1651	54	
7835 plate modulators off	1544	107	
7835 filament off (from 6000 A)	1226	318	
LEBT sol/chop/extr off	1223	3	
LEBT pulsed quads/RFQ off	1212	11	
Tank cooling water off	1072	140	
Transport water off	1045	27	
RF cooling water off	794	251	
Source	793	1	
BLIP cooling water	788	5	
Chillers off	478	310	

Remaining = building, lights, vacuum, etc.

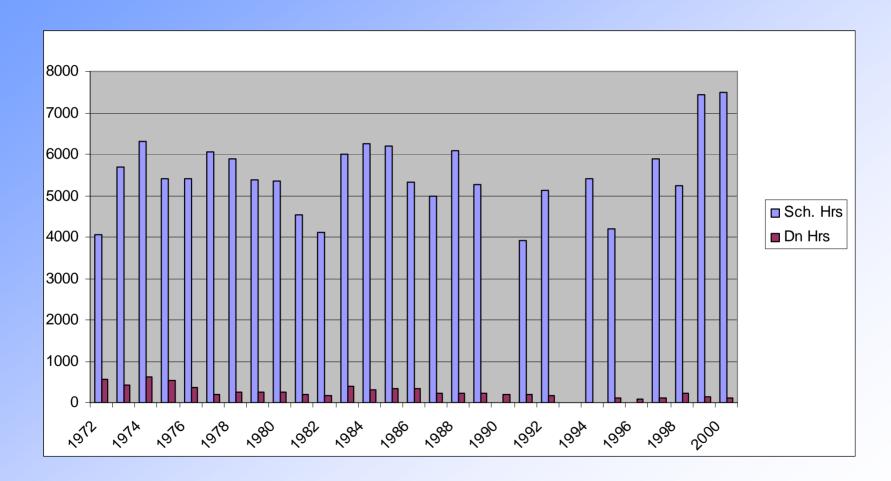
RF systems:

RF pulsing off	243
RF HV PS off	18
7835 filaments to 6000 A	229
4616's off	54
7835 plate modulators off	107
7835 filament off (from 6000 A)	318

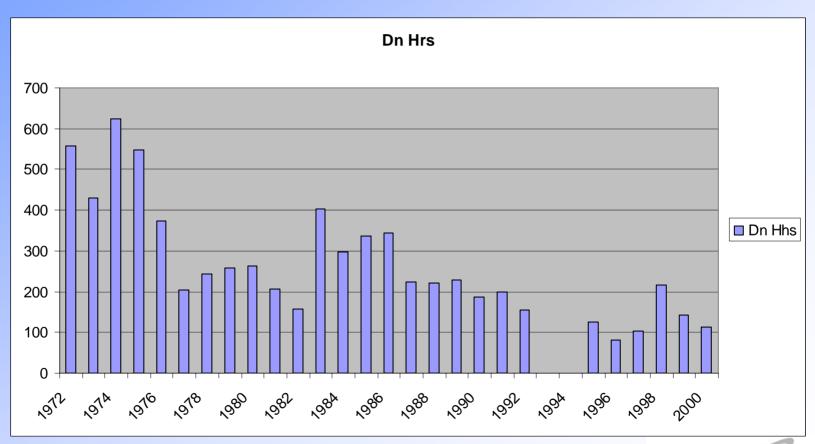
Brookhaven Scie U.S. Departme

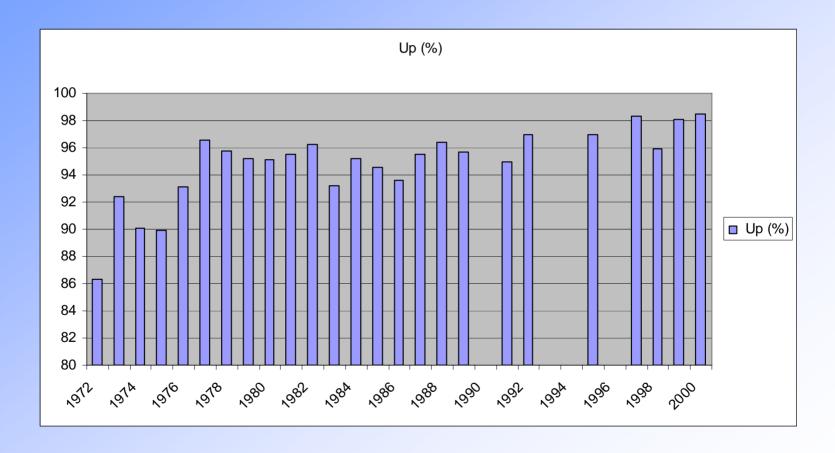
TOTAL RF

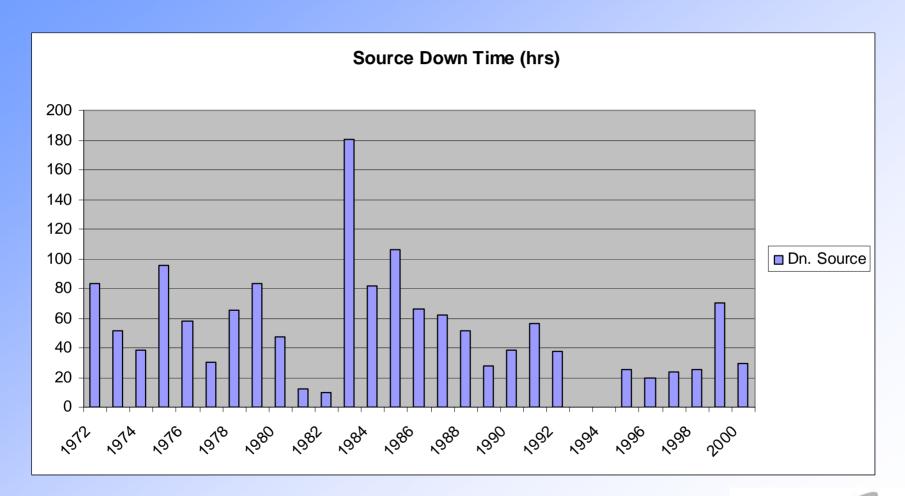
F


Pwr/sys

107.66667


969




Linac Operation

